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Lower bounds for quantum mechanical energy levels 
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Abstract. l‘he application of Barta’s method to Schrodinger’s equation is reviewed, the 
result of Duffin being extended in several directions. 

1. Introduction 

Duffin (1947) has given an interesting method for finding lower bounds for the ground 
state eigenvalue of Schrodinger’s equation. His method is an extension of one due to 
Barta (1937) for approximating the fundamental frequency of a vibrating membrane. 
Although the method is well known to specialists in the area of uniform elliptic 
differential operators (see the references given in the next section) it has been largely 
overlooked by workers in quantum mechanics. The method is closely related to the 
‘local energy’ method (see for example Frost 1942, Bartlett 1955, Bethe and Salpeter 
1957, Stanton and Taylor 1966) yet the author has been able to find no reference to it 
in this context. 

In this paper we review the application of Barta’s method to Schrodinger’s equa- 
tion, and extend the result of Duffin in several directions. This is achieved in a 
sequence of theorems, some essentially those of other workers and some of them new. 
The usage of the method is illustrated with simple exampies, including the deter- 
mination of a lower bound for the ground state energy of H i  as a function of the 
distance between the nuclei. 

We do not claim that the method as it stands will straightforwardly produce lower 
bounds of high quality in the majority of problems encountered by theoretical 
chemists. For example, in the case of systems involving more than two electrons the 
method provides a lower bound to the unphysical ground state energy which is 
obtained when the antisymmetry constraint on the wavefunction is ignored. 
Nonetheless we believe that a knowledge of the method adds to the understanding of 
the quantum mechanical eigenvalue problem and may well lead to useful 
developments. 

t Present address: Centre d’Etudes NuclCaires de Saclay, Service de Physique Thtorique, BP No. 2,91190 
Gif-sur-Yvette, France. 
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56 M F Barnsley 

2. One-dimensional problems 

2.1. Problems posed on a finite interval 

Here we consider the situation typified by a particle of mass m which moves one- 
dimensionally on the x axis in a real potential V ( x )  such that 

(2.1.1) continuous for x E [a, b ]  where -CO < a C b < + CO, 

positive infinite for x &  [a, 61. v ( x >  is { 
The corresponding Schrodinger wave equation for stationary bound states is, in 
atomic units, 

with the boundary conditions 

4(a )  = $(b )  = 0. (2.1.3) 

The real number E is an energy eigenvalue, and any wavefunction 4 ( x )  belonging to 
E is required not to vanish identically over [a ,  b ] .  

Discussion of the above problem is simplified because one knows a priori the 
following results; see for example Birkhoff and Rota (1962). The system has an 
infinite sequence of real eigenvalues EO< El < E2 < . . . with E, = 00. The 
eigenfunction 4, ( x )  belonging to the eigenvalue E, possesses a continuous second 
derivative on [a,  61, has exactly n zeros in the interval a < x < b, and is uniquely 
determined up to a constant factor. 

The central idea behind the results in this paper is exemplified by the following 
theorem, various forms of which have previously been given by Barta (1937), Duffin 
(1947), Fichera (1954), Hersch (1959), Protter and Weinberger (1967), and others. 
The theorem was substantially known by Picard (1893) and Boggio (1907). 

Theorem 1 .  For x E [a, b ]  let * ( x )  be any function, not identically zero, such that 
Y ( x )  exists and is continuous, such that * ( x ) d  0, and such that 

(2.1.4) 

(2.1.5) 

where Eo is the lowest eigenvalue of the problem (2.1.2) and (2.1.3). 

Proof. Let 

y = min(HV(x) - EoT(x): x E [a, b]) .  (2.1.6) 
Then because H * ( x ) - E o U r ( x )  is continuous for x E [a, b ]  we have that y is finite and 
there exists xo E [a, b ]  such that 

(2.1.7) y = H*(xo) - Eo*(xo). 
We consider separately the two possibilities 

(i) y CO, and (ii) y 20 .  (2.1.8) 
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If (i) is true then the continuity of H'?(x)-Eo'?(x) implies that there exists an 

(2.1.9) 

and in particular q ( x )  cannot vanish identically on any open subinterval contained in 
[a ,  b ]  fl N(xo).  Hence W ( x )  can vanish only at isolated points in [a ,  b ]  f l  N(xo)  and it 
follows that 

open neighbourhood N(xo)  of xo such that 

HW(x)-EoW(x)< 0 for all x E [a ,  b ]  f l  N(xo),  

W X l ) > O  for some x1 E [a ,  b ]  f l  N(x0).  (2.1.10) 

From (2.1.9) and (2.1.10) we obtain 

H W x  d / W  1) < Eo 
which proves the proposition in case (i). 

If (ii) is true then we have 

HW(x) - Eoq(x)  3 0 for all x E [a ,  b ] .  

(2.1.1 1) 

(2.1.12) 

If the equality sign here pertains throughout the interval then 

HY(x) /W(x)=  Eo for all x E [a ,  b ]  such that W ( x ) #  0, (2.1.13) 

and the theorem follows. If the equality sign in (2.1.12) does not hold throughout the 
interval then, using continuity, there must exist some subinterval [c, d ]  = [a ,  b ]  with 
c < d such that 

SO for all x E [a ,  b ] ,  
for all x E [c,  d ] .  

(2.1.14) 

Let us assume (2.1.14) is true. Then we note that 

H$o(x)-Eo$o(x)= 0 for all x E [a ,  b ] ,  (2.1.15) 

where we can suppose ILO(x)>O for all x € ( a ,  6 ) .  Multiplying (2.1.14) by Jlo(x) ,  
(2.1.15) by W ( x ) ,  and taking the difference we obtain 

SO for all x E [a ,  b ] ,  
for all x E [c, d ] .  

(2.1.16) 

The latter quantity is continuous and so we can integrate over [a, b ] ,  yielding 

This is impossible in view of (2.1.4) and the fact that $h(a)>O while &(b)< 0. We 
conclude that (2.1.14) is false. 

The above proposition says that for some x E [a, b] the 'local energy' E ( x ) =  
HY(x) /W(x)  is less than or equal to the true ground state energy Eo when W is a 
sensible approximation to $0. This result is complementary to the Rayleigh-Ritz 
bound 

(2.1.18) 

which applies when * satisfies the boundary conditions. The similarity in appearance 
between the expectation value in (2.1.18) and the lower bound in (2.1.5) is striking. 
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We will later see that theorem 1 extends to the case of far more general quantum 
mechanical systems. However, a unique feature of one-dimensional problems is that a 
similar theorem applies to excited states. 

Theorem 2. For x E [a, b ]  let q , , ( x )  be any real function vanishing only at isolated 
points, such that ' P : ( x )  exists and is continuous, and such that q , , ( x )  changes sign 
exactly n times as x progresses from a to b. Furthermore let q,,(x) be non-negative 
throughout some neighbourhood of a, with 

",(a)SO, and (- l )"q, , (b)aO.  (2.1.19) 

Then 

(2.1.20) 

where E,, is the (n  + 1)th eigenvalue of the problem (2.1.2) and (2.1.3). 

Proof. We know that & ( x )  has precisely n zeros in the interval a < x < b. Let us 
denote the locations of these zeros by x?', j = 1,2 ,  . . . , n, where 

a < x ~ " ' < x p < .  , .<x!: '<b .  (2.1.21) 

Then setting x r ' =  a and x!:!~ = b we consider the following ( n  + 1) different eigen- 
value problems: 

The eigenfunction &(x) (with x lying in the appropriate interval) satisfies each of the 
above problems with E =E,,. Moreover (L, , (x)  has no zeros for x restricted to any one 
of the domains a < x  <xi"', x;'"<x <x:"', . . . , x z ) < x  <b. It follows that E, is the 
lowest eigenvalue for each of the above problems. Since y I , , ( x )  changes sign n times 
on [a, b]  it follows that it does not change sign throughout at least one of the (n  + 1) 
intervals [ x i " ' ,  x [ : i ] ,  i = 0, 1, . . . , n. Let such an interval be [x?', x ? ~ J .  Since q,,(x) 
does not change sign on [xf", x F ~ J  and does not vanish identically on this interval (its 
zeros being isolated), we can apply theorem 1 to the ( k  + 1)th eigenvalue problem in 
(2.1.22) with U@)= (- l)kq,,(x),  yielding 

(2.1.23) 

which implies (2.1.20). 

A result along similar lines to the above has been given by Redheffer (1966). 

Example 1 .  We use theorem 2 to derive some bounds given by Breuer and Gottlieb 
(1971). Let 2?o<2?l <& . . . and J0, Jl, $ 2 , .  . . denote respectively the eigenvalues 
and eigenfunctions belonging to the problem (2.1.2) and (2.1.3) when V(x) is replaced 
by a different continuous function v(x ) .  Then we can choose V,,(x)=&(x) in 
theorem 2, yielding 

(2.1.24) I.?,, +min(V(x)- Q ( x ) :  x E [a, b ] ) c E , .  
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Since the same relation must hold when E,, and V are interchanged with l?,, and ?, it 
now follows that 

min(o(x)- V(x): x E [a, b ] ) S &  -E,, Smax(Q(x)- V(x): x E [ a ,  b ] ) .  (2 .1 .25)  

This result provides a simple measure of the error produced in the eigenvalues when a 
given potential is approximated by another which may be easier to work with. 

Example 2. Consider the standard ‘particle-in-a-box’ eigenvalue problem 

(2 .1 .26)  

for which we have the exact quantities 

$,, (x) = sin(n + 1)n-x, E,, = ( n  f 1 ) ’ r 2 / 2 m ,  n = 0 , 1 , 2  , . . . .  (2 .1 .27)  

Then in (2 .1 .20)  we can choose 

T\u,(x) = x(1 -x), 

which leads respectively to the lower bounds 

q l ( x )  = x ( 1 -  2 x ) (  1 - x), and P l (x )  = (1 - 2 x )  sin TX, 

(2 .1 .28)  

8/2m s Eo, 2 4 / 2 m  G El, and 3 r 2 / 2 m  s El. (2 .1 .29)  

We note that although these bounds are sensible, they are significantly less close to the 
exact values than the corresponding upper bounds which are obtained via the Ray- 
leigh-Ritz method using exactly the same trial functions. For example, using the first 
two trial functions in (2.1.28) we find 

EoG 10 /2m,  and E 1 S 4 2 / 2 m ,  (2 .1 .30)  
which are better by factors of 13, and 7 ,  respectively than their couterparts in (2.1.29).  

(2 .1 .31 )  

Alternatively in this example we can choose 

V,, ( x )  = sin qnx 

where q,, is a real parameter such that 

nT < q,, s (n + l ) ~ ,  n = 0 ,  1 , 2 , .  . . . 
Then we find the lower bounds 

(2 .1 .32)  

q,2/2m E,,, n = 0 , 1 , 2  , . . . .  (2 .1 .33)  
These bounds approach the exact values smoothly as the trial functions approach 

the exact eigenfunctions at qn = ( n  + 1 ) ~ .  We note that the trial functions do not 
satisfy the exact boundary conditions except when q,, = (n  + 1 ) ~ .  

2.2. V(x) continuous for all x 

Here, unlike the situation in 0 2.1 ,  we are not assured of the existence of even a single 
bound state nor do we know how many nodes a given bound state wavefunction 
posseses. Thus, corresponding provisions have to be made in the statements of 
theorems. 

A proposition similar to the following one has been given by Duffin (1947)  who 
makes certain assumptions which we avoid by using a different proof. 
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Theorem 3. Let the real function $ ( x ) ,  not identically zero but tending to zero as x 
tends to infinity, be continuous for all x E R ,  and satisfy 

(2.2.1) 

for some E E R .  V ( x )  is real and continuous with ( E -  V(x) )<O for all sufficiently 
large 1x1. Let * ( x )  be any real function, vanishing only at isolated points, which 
undergoes no change of sign and is such that HV'(x) is defined and continuous for all 
X E R .  Then 

(2 * 2.2) 

Proof. Without any loss of generality we can assume that $ ( c ) =  1 for some finite 
c E R .  Let (a, 6) be the largest real open interval containing c such that $ ( x )  # 0 for all 
x E (a, b), where we may have a = -CO, or b = +CO, or both. Let 0 < E < 1 be given, 
and let (a(€),  b ( ~ ) )  be the largest open interval contained in (a, b)  such that 

$ ( 4 E ) )  = $ ( W E ) )  = E .  (2.2.3) 

Then it is clear that both a(.) and b ( ~ )  are finite and that u ( E ) < ~ ( E ) .  Now let E,' 
denote the least eigenvalue for the problem 

(2.2.4) 

where the boundary conditions are 

4(a(E))=4(b(E))=O.  (2.2.5) 

Then on applying theorem 1 to this problem with 9 ( x )  as above we obtain 

(2.2.6) 

The proof is completed if we show that E: tends to a value less than or equal to E 
as E tends to zero. To this end we examine the Rayleigh-Ritz bound 

(2.2.7) 

which is valid for all @ ( x )  which vanish at x = a(€ )  and x = b ( ~ ) ,  are not identically 
zero, and are such that H @ ( x )  is continuous for all x E [a(€),  b ( ~ ) ] .  An admissible 
choice is 

@ ( x ) = t L ( x ) - e ,  (2.2.8) 

and this leads to 

(2.2.9) 

Since (E- V(x))<O whenever Ixl>M for some finite M > 0 ,  and since ( $ ( x ) - E ) > O  
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for all x E [a (€) ,  b ( ~ ) ]  when E is sufficiently small, we now have for fixed Z 

(2.2.10) 

for all sufficiently small E >O.  The second term on the right-hand side here tends to 
zero as E tends to zero so that either lim,,oE;=E, or else E:<E whenever E is 
sufficiently small. Combining this observation with (2.2.0) we find (2.2.2).  

We omit the proof of the next theorem because it follows from theorem 3 in much 
the same way as theorem 2 follows from theorem 1 .  

Theorem 4. Let the real function & ( X ) ,  vanishing only at isolated points and tending 
to zero as 1x1 tends to infinity, be continuous for all x ER. Assume that & ( x )  
undergoes exactly n changes of sign for x E R, and that it satisfies 

(2.2.11) 

for some E E R. V ( x )  is real and continuous with (E - V(x))<  0 for all sufficiently 
large 1x1. Let Vn(x)  be any real function,.vanishing only at isolated points, which 
undergoes exactly n changes of sign and is such that H q n ( x )  is defined and continu- 
ous for all x E R, Then 

(2.2.12) 

We remark that the trial function itself need not tend to zero as 1x1 tends to infinity. 
The simple choice 

V(x)  = constant 

in theorem 3 yields at once the well known result 

(2.2.13) 

min( V ( x ) :  x E R) s E (2.2.14) 

for any bound state energy E. 

Example 3. For the case of the harmonic oscillator potential 

v(x)= w 2 x 2 / 2 m  for some w ER, (2.2.15) 

we can choose in theorem 3 

U ( x )  = exp(- yx2) ,  YER. (2.2.16) 

This trial function approaches the exact ground state eigenfunction as y approaches 
1 w 1/2. We obtain 

(2.2.17) 

and note that as y approaches Iwl/2 from below the bound approaches the exact 
value, while when y approaches 1 w 1/2 from above the bound simply remains equal to 
minus infinity. 
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Example 4 .  Consider the case of the artificial potential 

V ( X )  = w4x6 /2m,  for some w E R ,  (2.2.18) 

chosen because we do not have closed form expressions for the corresponding eigen- 
functions and eigenvalues. In theorem 3 we set 

* ( x )  = exp[- w2x4 /4J3-  ( I / I ~ ) ' ' ~ I W I X ~ I ,  (2.2.19) 

providing the lower bound 

( 1 / 1 2 ) ~ ' ~ l w l / m  s E ~ .  (2.2.20)  

This compares favourably with the upper bound 

Eo< (5/36)'/41wI/m (2.2.21) 

q ( x ) =  exp[ -(45/64)'/41wlx2].  (2.2.22) 

which follows from the Rayleigh-Ritz principle with trial function 

To find a lower bound for the first excited state energy we assume that the cor- 
responding eigenfunction has only one node. Then we can have 

(2.2.23) q l ( x )  = x expi- w 2 x 4 / 4 t 5 -  ( 2 5 / 1 0 8 ) ~ / ~ 1  W I X ' I  

in theorem 4 ,  and this yields the lower bound 

(3/4)1/41wl/m S El. (2.2.24) 

The latter lower bound lies comfortably above the upper bound in (2.2.21).  

3. Many-dimensional problems 

3.1. The generalisations of theorems 1 and 3 

First we consider a quantum mechanical system with N degrees of freedom which is 
confined to a bounded open domain D c RN by a real potential V ( x )  such that 

continuous for x = ( X I ,  x 2 ,  . . . , x N )  c D, 
positive infinite for x g  6. (3.1.1) 

denotes the closure of D. The boundary aD of D is assumed to be sufficiently 
smooth for the Green theorem to apply, see Miranda (1970).  For generality we take 
Schrodinger's equation for the system to be 

~ ( x )  is { 

with + ( x )  = 0 for all x E aD. (3.1.2) 
The real functions p i i ( x )  have continuous first derivatives and are such that the matrix 
(p i i (x ) )  is strictly positive for all x E 6. 

For such problems it is known that the eigenfunction rl0(x)  corresponding to the 
lowest eigenvalue Eo can be chosen so that t,bo(x) > 0 for all x E D ;  see Keller and 
Cohen (1967) for example. This allows us to extend theorem 1. 
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Theorem 5. For x E b let * ( x )  be any function not identically zero, such that H*(x) 
is defined and continuous, and such that 9 ( x ) >  0. Then 

(3.1.3) 

where Eo is the lowest eigenvalue associated with (3.1.2), 

Proof. This follows the same lines as the proof of theorem 1. The key point to be 
established is that one cannot have 

HW(x)-  Eo*(x) 3 0 for all x E D, (3.1.4) 

with strict inequality somewhere. But if (3.1.4) is true then we must have 

$&)(H -Eo)V(x)  dx = 1 f n i ( x ) p i j ( x ) ( = ) q ( x )  axi dx, 
dD i,i = 1 

(3.1.5) 

where we have used the Green theorem and where ( n l ( x ) ,  n 2 ( x ) ,  . . . , n , ( x ) )  denotes 
the outward unit normal to d o .  The latter is not possible because $&) = 0 for all 
x E aD implies 

(a$o(x)/ax1, a+o(x)laxz, ' . * , a+o(x)/axN) 

= a ( X ) ( n l ( x ) ,  n2(x) ,  . . . , nN(X)), for all x E a l l ,  (3.1.6) 

for some real-valued function a ( x ) ,  and the positivity of $ ( x )  for X E D  implies 
a ( x ) c 0  for x E d o ,  so that the right-hand zide of (3.1.5) becomes 

N 

n i ( x ) p i j ( x ) n i ( x ) )  dx s 0. (3.1.7) 

However, there is no obvious way of extending theorem 2 to more than one 
dimension. For example, one might suppose that by relaxing the positivity constraint 
on 9 ( x )  in theorem 5 and requiring instead that the nodal surfaces defined by * ( x )  
divide b into at most two parts, one will then obtain from the left-hand side of (3.1.3) 
a lower bound to the first excited state energy of the system. But neither the latter 
supposition nor anything like it can generally be the case because in more than one 
dimension there can exist eigenfunctions which correspond to arbitrarily high ex- 
citation number and yet whose nodal surfaces divide the fundamental domain into 
only two parts; see Courant and Hilbert (1953). We find similarly that theorem 4 
cannot be generalised. 

We extend theorem 3 to the following theorem. 

Theorem 6. Let the real function $ ( x ) ,  not identically zero but tending to zero as 1x1 
tends to infinity, be continuous for all x E R and satisfy 

for all x ER", (3.1.8) 

for some E E R. It is assumed that for all x belonging to any closed bounded subset of 
RN the real functions p i j ( x )  have continuous first derivatives and are such that the 
matrix ( p i j ( x ) )  is strictly positive. Furthermore V ( x )  is real and continuous with 
(E - V ( x ) ) <  0 for all sufficiently large / x  I. Let 9 ( x )  be any real function, vanishing 
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only on a set of measure zero in OX", which undergoes no changes of sign and is such 
that H q ( x )  is defined and continuous for all x E R. Then 

(3.1.9) 

Proof. We choose c cRN such that $(c)= 1, and let D c R N  be the largest open 
connected set containing c such that $(x) # 0 for all x E D. Then for given 0 < E  < 1 
we define D ( E )  to be the largest open connected subset of D with $(x) = E for all 
x E d o ( € ) .  The proof now follows the same lines as the proof of theorem 3 with D and 
D ( E )  replacing (a, b )  and ( a ( € ) ,  b ( ~ ) )  respectively. 

3.2. Simple atomic and molecular systems 

We now consider the case where H is the Schrodinger wave operator for an atomic or 
molecular system, so that in atomic units 

Here m ,  is the mass of the vth nucleus which has charge z , ;  I', denotes its position 
vector; and V: denotes the corresponding Laplacian; v = 1 ,2 ,  . . . , M. Similarly ri 
and V: refer to the ith electron for i = 1 , 2 , .  . . , N. The system is supposed to admit 
bound states so that there exists a lowest negative eigenvalue Eo corresponding to a 
normalisable eigenfunction CLOF), where 

(3.2.2) r=  (ru=l, rVz2, .  . . , r u = M ,  J?i=l, ri=2,. . . , r i = N ) .  

Thus 

H$o(V = Eo$o(r), cclo(r) E ~ ~ ( ( w - 9  (3.2.3) 

where X = 3(M + N )  and L2(RJv) denotes the Hilbert space consisting of all complex- 
valued functions which are square-integrable over R". We will use the notation 

(3.2.4) 

for the inner product in L2(RK). 
When we treat H as an operator in L 2 ( R x )  we shall assume that it is essentially 

self-adjoint and will then use the same notation H to mean its closure. In this case we 
will denote its domain by D(H) .  

will be in- 
variant to the interchange of any pair of electron coordinates. Thus for all one- and 
two-electron systems EO will be the physical ground state energy: for ground state 
two-electron systems the antisymmetry of the total wavefunction comes from the 
antisymmetry of the spin component a (1)@(2)- a(l)@(2).  More generally we expect 
that Eo is itself an extreme underestimate to the true ground state energy because the 
spatial part of the physically allowed wavefunction is generally much more con- 
strained than $OF). 

In (3.2.3) no antisymmetry requirements are imposed and so 

Theorem 7. Assume that, in (3.2.3), qjo(r)ED(H) can be chosen so that it is strictly 
positive for almost all r E RN. Let P(I') be any function belonging to D ( H )  which is 
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strictly positive for almost all r E R”. Then 

(3.2.5) 

Proof. Let SZ be any subset of R” with non-zero measure. Then we show that it is 
impossible to have 

for almost all r E R” 
for almost all I’ E SZ. H\y(r)-E,\y(r)( :: 

For suppose (3.2.6) is true. Then it follows that 

($0, (H -Eo)*) > 0. 

(3.2.6) 

(3.2.7) 

But because H is self-adjoint and both l j l0 and Q belong to D ( H )  we have 

(((10, (H - Eo)W = ( (H - Eo)$o, w = 0, (3.2.8) 

Hence (3.2.6) is false, and there must exist a subset U of R” of non-zero measure 

m(r)-E0*(r)S o for almost all r E U. (3.2.9) 

which contradicts (3.2.7). 

such that 

(3.2.5) is now implied because we also have 

w-3’0 for almost all r E U. (3.2.10) 

An alternative approach to lower bounds on Eo is possible. Instead of working in a 
Hilbert space framework one extends theorem 6 with the aid of an assumption. Such 
an approach is of interest because it maintains a consistency with the ideas introduced 
earlier in the paper: the result is that more flexible trial functions, no longer required 
to belong to D(H) ,  can be utilised to obtain lower bounds for Eo. 

We cannot directly apply the kind of argument used in § 3.1 to the present systems 
because of the singularities occurring in the Coulombic potentials. This difficulty is 
side-stepped by introducing an assumption as follows. Let l > S > O  be given and 
correspondingly define 

when 0 Ir, - r,/ < S, 
when S SG IF,, - r,l c 1 /S, 

when 1/S c Ir, -rvl. 
v;,m= z&zu/lr@ - r u t  1: (3.2.1 1) 

Analogously, define approximate Coulombic potentials V;,(r) and V[{I’) associated 
with the electron-nucleus and electron-electron interactions respectively, so that the 
potential energy term in (3.2.1) is approximated by the continuous function 

and H is approximated by 

(3.2.12) 

(3.2.1 3) 
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Assumption. For all sufficiently small S > O  there exists a least real number E:, 
belonging to a continuous real function &(r), such that 

Hs&(r) = E:&(r) for all r E R” (3.2.14) 

where 

either E: < Eo, or else lim E t  = Eo. 
6-0 

(3.2.15) 

The function &r) is required to be not identically zero, and to tend to zero as Irl 
tends to infinity. 

This assumption is roughly of the kind made in quantum mechanical perturbation 
theory, and seems likely to be true because the approximate potential approaches the 
true Coulombic potential as S tends to zero while having the same symmetries. 

Provided that the above assumption is true we can apply theorem 6 to obtain lower 
bounds for Eo. Namely, for any real function q(r), vanishing only on a set of measure 
zero in R”, which undergoes no changes of sign and is such that H%’(I’) is defined and 
continuous for all I’ E R”, we must have 

I n f ( s :  r E RK, q(r) # 0) s E t  

for all sufficiently small 6. Hence, if the limit exists, we obtain using our assumption 
(3.2.15) 

lim In,(-: r E R”, q(r) z 0) s Eo. 
s-0 w-7 

(3.2.16) 

(3.2.17) 

Example 5. For a hydrogen-like system with nuclear charge z we have 

H=-’ 2v -4tr1, r E IW~.  (3.2.18) 

We can apply theorem 7 with the choice of trial function 

= CY >o,  (3.2.19) 

which becomes the exact ground state eigenfunction when Q = z. Then (3.2.5) gives 

(3.2.20) 

In particular, the lower bound smoothly approaches the exact value (Eo = - i z 2 )  as CY 
approaches z through values greater than z. Notice that Hq/*  possesses a polar 
singularity except when CY = z. 

Alternatively, provided with our assumption circa (3.2.14), we can use the trial 
function 

(3.2.21) *(r) = 1/(1+ z Irl) 
which does not belong to D(H) .  Then (3.2.17) yields the crude bound 

E o 3  -22’. (3.2.22) 

Example 6. For a helium-like system with nuclear charge z we have 

(3.2.23) H=-’ *v1 - ~ V ; - ~ / I ~ ~ I  -z/ir2i + w1 -r21. 
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The simple choice of trial function 

3 f f > O  -awl  i+ir,i) wrl, r2) = e 

in theorem 7 gives the bounds 

(3 .2 .24)  

We have tried to improve this result by using more elaborate trial functions, but 
without success. However, Bartlett (1955)  has obtained an approximate wavefunction 
for the ground state of helium in numerical form. This wavefunction was obtained by 
an iterative procedure which was designed to make the fluctuations in the local energy 
as small as possible! Over all the calculated points, corresponding to values of Irll and 
lrzl up to about 4 au, the local energy lay between - 2 . 9 2  au and -2 .88  au. The 
foregoing theory suggests, but does not on its own prove, that - 2 . 9 2  au is a lower 
bound for the ground state energy of helium. 

Example 7. For systems such,as H:, when the Born-Oppenheimer approximation is 
made, one obtains 

H = -tV2-2/lrl-2/lr+R/+Z2/IRI, rm3 (3 .2 .26)  

where the origin of coordinates is at one of the two nuclei, R is the fixed position 
vector for the other nucleus, and each nucleus has charge z. Applying thecrem 7 with 
trial function 

9 a >o,  (3 .2 .27)  q,(r) = e - a ~ r i - a ~ r + ~ i  

we discover 

Hence for the ground state energy Eo(lR1) we have on putting a = z the lower bound 

(3 .2 .29)  

which behaves correctly as /RI tends to zeio. To obtain a bound which tends to the 
correct limit as IRI tends to infinity we use the trial function 

Eo(lR I) 2 - 22 + z2/IR 1, 

, CY >o.  (3 .2 .30)  q,(r)= e-4rl+e-alr+RI 

Then if a is chosen to satisfy 

a = z ( 1  +e-a iRi ) ,  (3 .2 .31)  
we find after some analysis that 

Eo(lRl)2 -$a2 - 2 2 ( 1 -  e-a'R1)/IRI + z2/IRI = Ek(1R)). (3 .2 .32)  

The lower bound Ek(IRI) is worse than the lower bound (3 .2 .29)  when IRlz < 1.242, 
and better than it when l R J z > 1 . 2 4 3 .  For l R [ z > 5  we find that to a good ap- 
proximation 

(3 .2 .33)  

so that Ek(IRI)+Eo(lRI) as IRI+oo. We note that the Rayleigh-Ritz upper bound 
E,L(IR I) - - $2' + (2' - 2 ~ ) / l R  1, 
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EOU(IR)) which is obtained using the trial function (3.2.31) wherein (Y = z, behaves for 
large [RI according to 

(3.2.34) 

Although the lower bounds obtained in this problem are of a simple form, they are 
crude by the standards usually applied to such problems. For example, at (R 1 = 5 with 
z = 1 our lower bound is - 0.7 whilst the exact energy is - 0.5244. Furthermore it 
would require considerable effort to improve the bounds. 

Er(IR)) - - t ~ ’ +  (2’-  z)/lRI. 
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